ANALISIS REAL.

Primer Cuatrimestre de 2004.

Practica 4.

PRACTICA: ESPACIOS L^p .

- 1. Sean $E \subseteq \mathbb{R}^n$ de medida finita y $1 \le p_1 \le p_2 \le \infty$.
 - a) Probar que $L^{p_2}(E) \subset L^{p_1}(E)$.
 - b) Mostrar que $|E| < \infty$, es una condición necesaria para la inclusión.
- 2. Probar que:
 - a) Si $f_n \longrightarrow_{n \to \infty} f$ en $L^p(E)$, para algún $p: 1 \leq p \leq \infty$, entonces $f_n \xrightarrow{m}_{n \to \infty} f$ sobre E.
 - b) Si $f_n \longrightarrow_{n \to \infty} f$ en $L^p(E)$, $g_n \longrightarrow_{n \to \infty} g$ en $L^q(E)$, y 1/p + 1/q = 1, entonces $f_n g_n \longrightarrow_{n \to \infty} f g$ en $L^1(E)$.
 - c) Si $|E| < \infty$ y $f_n \longrightarrow_{n \to \infty} f$ en $L^{\infty}(E)$, entonces $f_n \longrightarrow_{n \to \infty} f$ en $L^p(E)$, para todo $p \ge 1$.
- 3. Dadas las funciones $f_n:[0,1]\to \mathbb{R}$,

$$f_n = \begin{cases} e^n, & 0 \le x \le 1/n \\ 0, & \text{en otro caso,} \end{cases}$$

probar que $f_n \longrightarrow_{n\to\infty} 0$ a.e. y $f_n \xrightarrow{m}_{n\to\infty} 0$, pero f_n no converge en $L^p([0,1])$ para $p:1\leq p\leq\infty$.

- 4. Sean $E \subseteq \mathbb{R}^n$ medible, $(f_n)_{n \ge 1}$ y f en $L^p(E)$, para $p: 1 \le p < \infty$. Probar:
 - $a) \|f_n f\|_{L^p(E)} \longrightarrow_{n \to \infty} 0 \quad \Rightarrow \quad \|f_n\|_{L^p(E)} \longrightarrow_{n \to \infty} \|f\|_{L^p(E)}.$
 - b) Si $f_n \longrightarrow_{n \to \infty} f$ a.e. sobre E, entonces:

$$||f_n||_{L^p(E)} \longrightarrow_{n \to \infty} ||f||_{L^p(E)} \Rightarrow ||f_n - f||_{L^p(E)} \longrightarrow_{n \to \infty} 0.$$

(Sug.: Aplicar el Lema de Fatou a la sucesión: $g_n(x) = 2^{p-1}(|f_n(x)|^p + |f(x)|^p) - |f_n(x) - f(x)|^p$.)

5. Si $f_n \longrightarrow_{n\to\infty} f$ en L^p , $1 \le p < \infty$, $g_n \longrightarrow_{n\to\infty} g$ puntualmente y $||g_n||_{\infty} \le M$, para todo $n \in \mathbb{N}$, probar que $f_n g_n \longrightarrow_{n\to\infty} f g$ en L^p .

1

6. Sea E = [0, 1/2]. Probar:

- a) $f(x) = x^{-1/p} (\ln x^{-1})^{-2/p} \in L^p(E), \ (1 \le p < \infty), \text{ pero } f \not\in L^r(E) \text{ si } r > p.$
- b) $g(x) = \ln x^{-1} \in L^p(E)$ para todo $p: 1 \le p < \infty$, pero $g \notin L^\infty(E)$.
- 7. Sea $E = [0, \infty)$. Probar que $f(x) = x^{-1/2}(1 + |\ln x|)^{-1} \in L^2(E)$ pero $f \notin L^p(E)$ para ningún $p: 1 \le p < \infty$, y $p \ne 2$.
- 8. a) Dadas funciones $f \in L^p(\mathbb{R}^n)$ y $g \in L^{p'}(\mathbb{R}^n)$ donde 1/p + 1/p' = 1, probar que la convolución f * g(x) existe y es finita para todo $x \in \mathbb{R}^n$. Además define una función acotada y uniformemente continua.
 - b) Dado $E \subseteq \mathbb{R}^n$ tal que $0 < |E| < \infty$, probar que:

$$E - E = \{x - y : x, y \in E\}$$

contiene un conjunto abierto no vacío. (Sug.: considerar $\chi_E * \chi_{-E}$.)